Lesson Plan 8 - 6.5 Volumes by Shells

1) Take attendance

We start with the idea that you can take a rectangle with thin thickness and connect it into a cylinder.

The volume of the cylinder is approximately $2\pi rh(\Delta x)$

We conclude that if we have a more complex volume whose height is a function of the radius x:

$$h = f(x)$$

Then the volume is
$$V = \int_{a}^{b} 2\pi x f(x) dx$$

Example 1: Volume of a cone

Note that if the height of the cone is h and the radius of the base is r $f(x) = h - \frac{h}{r}x$

plugging this into our formula we get

$$V = \int_{0}^{r} 2\pi x \left(h - \frac{h}{r} x \right) dx = 2\pi h \int_{0}^{r} x - \frac{x^{2}}{r} dx = 2\pi h \left[\frac{x^{2}}{2} - \frac{x^{3}}{3r} \right]_{0}^{r} = 2\pi h \left[\frac{r^{2}}{2} - \frac{r^{2}}{3} - (0) \right] = \frac{2\pi h r^{2}}{6} = \frac{1}{3}\pi r^{2} h$$

Example 2: A sine Bowl

Take the volume of the above function on the interval $\left[0,\sqrt{\pi/2}\,\right]$

Then we have

$$V = 2\pi \int_{0}^{\sqrt{\pi/2}} x \sin x^2 \ dx$$

Substitute

$$u = x^2$$
$$du = 2x dx$$

$$2\pi \int_{0}^{\sqrt{\pi/2}} x \sin x^{2} dx = \pi \int_{0}^{\pi/2} \sin u du = \pi \left[-\cos x \right]_{0}^{\pi/2} = \pi \left(0 - 1 \right) = \pi$$

Example 3: Volume of a ring

Rotate a circle given by $(x-c)^2 + y^2 = r^2$ forming a ring, what is the volume

Note that the height of the circle at any point is

$$f(x) = 2\sqrt{r^2 - (x - c)^2}$$
 on the interval $[c - r, c + r]$

so

$$V = \int_{c-r}^{c+r} 2\pi x 2\sqrt{r^2 - (x-c)^2} dx$$

Note that

$$\int_{c-r}^{c+r} 2x \sqrt{r^2 - (x-c)^2} dx = \int_{c-r}^{c+r} 2(x-c) \sqrt{r^2 - (x-c)^2} dx + \int_{c-r}^{c+r} 2c \sqrt{r^2 - (x-c)^2} dx$$

Let's do a transformation on the left term

$$u = x - c$$

$$du = dx$$

$$\int_{c-r}^{c+r} 2(x-c)\sqrt{r^2 - (x-c)^2} dx = \int_{-r}^{+r} 2u\sqrt{r^2 - u^2} dx$$

Since $u\sqrt{r^2-u^2}$ is an odd function, the integral is zero.

$$V = (2\pi c) \left(2 \int_{c-r}^{c+r} \pi \sqrt{r^2 - (x - c)^2} dx \right)$$

Doing the same transformation on

$$2\int_{c-r}^{c+r} \pi \sqrt{r^2 - (x-c)^2} dx = 2\int_{-r}^{+r} \pi \sqrt{r^2 - u^2} du$$

But this is just the area of a circle with radius r.

So finally we get

$$V = (2\pi c)(\pi r^2) = 2\pi^2 c r^2$$