
Lesson Plan 15 - Polar Coordinates H.1, H.2 

1) Take attendance 

2) Homework questions? 

 

Lesson Plan 11 More Solving Triangles, Polar Coordinates Math 48C Mitchell 

Schoenbrun 

 

Polar Coordinates. 

 

What are Polar Coordinates? 
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Each point has two coordinates ( ),r θ  instead of ( ),x y  

 

Polar coordinates are not unique, for example 
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Converting from Polar to Cartesian Coordinates: 
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Converting from Cartesian to Polar Coordinates: 

 
2 2r x y= +  

1tan
y

x
θ −  =  

 
 if x ≠0 

 

Note that if x=0 then 
2

π
θ =  or 
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θ =  

Also note that the range of 1tan−  is ,
2 2

π π −  
 so you need to look at the sign of x and y to 

find the right quadrant: 

 

(+,+) - first 

(-,+) - *second 

(-,-) - *third 

(+,-) - fourth 

 

For the second and third quadrant you will need to add π  to get the right angle.  
 

 

What is a polar equation?  

 

r=5 

 

r=θ 
 

( )cosr θ=  

 

Have students graph  r=1+cos(θ)  on their calculators.  This is what is known as a 
"cartoid" because it looks like a heart. 

 

Have students graph  r=2cos(θ)  on their calculators.  This should be a circle. 
 

Have students graph  r=cos(2θ)  on their calculators.  This should be a clover leaf. 
 



Symmetry in Polar coordinates. 

 

A) If an equation is unchanged by substituting θ−  for θ  then it is symmetric about the 
line θ =0 or the x axis. 
 

B) If an equation is unchanged by substituting -r for r then it is symmetric about the 

origin. 

 

C) If the equation is  unchanged by replacing θ  with π θ− , then it is symmetric about 

the line 
2

π
θ =  

 

 

 

 

Area of a sector 

 

The area of a circle is 2rπ . 

 

So the area per radian of θ  is 
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So if we have a curve in polar coordinates where r is a function of θ , ( )r f θ=  then the 

area contained between the limits of the curve and the curve is given by 
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Example 1:  Find the area enclosed by one loop of the four leaved rose ( )cos 2r θ= . 

 

The area is swept out over the interval ,
4 4

π π
θ  ∈ −  

 so the area is 
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Example 2: Find the area of thre region that lies inside the circle 3r =  and outside the 

cartioid 1 sinr θ= + . 
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g θ( ) = 1+sin θ( )

f θ( ) = 3⋅sin θ( )

 
It's interesting to note that both curves go through the origin, but ( )0 0f =  but 

3
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.   Since ( ) 3
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 they intersect at the origin.   

 



Where else do they intersect? 

( ) ( )3sin 1 sinθ θ= + at ( ) 1
sin

2
θ = .   Looking at the diagram one can see that these are 

the angles 
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g θ( ) = 1+sin θ( )

f θ( ) = 3⋅sin θ( )
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Arc Length in Polar Coordinates 

 

To find the length of a polar curve ( )r f θ=  for a bθ≤ ≤  we use the equations 
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with θ  as a parameter. 
 

Using the arc length formula we get 
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Example 4: 

Find the length of the cardioid with 1 sinr θ= + . 

 

Note this cardioid is generated by [ ]0,2θ π∈  
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